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Generating minute-long videos is a critical step toward developing world models, providing a foundation
for realistic extended scenes and advanced AI simulators. The emerging semi-autoregressive (block
diffusion) paradigm integrates the strengths of diffusion and autoregressive models, enabling arbitrary-
length video generation and improving inference efficiency through KV caching and parallel sampling.
However, it still faces challenges such as error accumulation from KV caching over long sequences and
the absence of suitable evaluation benchmarks. To overcome these limitations, we propose BlockVid, a
novel block diffusion framework equipped with a semantic-aware sparse KV cache, an effective training
strategy called Block Forcing, and dedicated noise scheduling to reduce error propagation and enhance
temporal consistency. Additionally, we introduce LV-Bench, a fine-grained benchmark for minute-long
videos, complete with new metrics designed to evaluate long-range coherence. Extensive experiments
on VBench and LV-Bench demonstrate that our approach consistently outperforms existing methods in
generating high-quality, coherent minute-long videos. In particular, it achieves a 22.2% improvement
on VDE Subject and a 19.4% improvement on VDE Clarity in LV-Bench over the current state of the
art.
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Figure 1 Architecture comparison: AR vs. Diffusion vs. Block
Diffusion (Semi-AR).

Long video generation is crucial for creating re-
alistic and coherent narratives that unfold over
extended durations, which is essential for applica-
tions such as filmmaking, digital storytelling, and
virtual simulation [41, 33, 20, 25]. Moreover, the
ability to generate minute-long videos is a key step
toward building world models, which act as foun-
dational simulators for agentic AI, embodied AI,
and gaming [4, 29].

A key breakthrough empowering this is the semi-
autoregressive (block-diffusion) decoding paradigm,
as shown in Figure 1 (3) [2], which merges the
strengths of diffusion and autoregressive methods
by generating video tokens in blocks—applying
diffusion within each block while conditioning on
previous ones, resulting in more coherent and sta-
ble video sequences [19, 31]. Notably, it addresses
the key limitations of both diffusion and autore-
gressive (AR) models. Most current video diffusion
models [32] rely on the Diffusion Transformer (DiT)
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[27]—which uses bidirectional attention without KV caching. While this enables parallelized generation and
controllability, decoding is inefficient and restricted to fixed lengths. In contrast, AR-based frameworks [34]
support variable-length generation and KV Cache management, but their generation quality lags behind video
diffusion, and decoding is not parallelizable. Importantly, block diffusion [19, 31] interpolates between AR
and diffusion by reintroducing LLM-style KV Cache management, enabling efficient, variable-length, and
high-quality generation.

However, existing block diffusion methods face two fundamental challenges. First, AR models inevitably
suffer from error accumulation, where small prediction mistakes gradually build up over time and will be
directly stored in the KV cache [22]. In long video generation, these accumulated errors typically manifest as
quality degradation, color drift, subject and background inconsistency, and visual distortions [26]. As the
sequence extends, these errors compound, weakening long-range dependencies and limiting its effectiveness
for generating coherent, minute-long videos (see Figure 2). Second, the domain is hindered by the lack of
fine-grained long video datasets and reliable evaluation metrics. Currently, most open-source datasets consist of
only short or fragmented chunks, with few minute-long datasets featuring fine-grained annotations. Meanwhile,
existing benchmarks and metrics like VBench [21] focus on diversity or object categories but fail to capture
error accumulation and coherence over extended durations.

To this end, we propose BlockVid, a semi-autoregressive block diffusion model generating minute-long videos
in a chunk-by-chunk manner, as shown in Figure 3.

Three strategies are proposed to systematically address the accumulation error induced by the KV cache from
both training and inference perspectives. 1) We first introduce a semantic sparse KV cache that selectively
stores salient tokens from past chunks and retrieves the most semantically aligned context for the current
prompt, thereby maintaining long-range consistency without propagating redundant errors. 2) Moreover,
to bridge the training–inference gap, we introduce Block Forcing, which combines Velocity Forcing loss to
regularize chunk-wise predictions with Self Forcing loss [19]. This prevents models from drifting over long
horizons, such as losing track of subjects or gradually altering scene content. 3) We further explore various
noise scheduling and shuffling strategies for long video generation to enhance temporal consistency and reduce
error accumulation over extended durations.

To address the lack of long-video datasets and benchmarks, we propose LV-Bench, a collection of 1,000
minute-long videos with fine-grained annotations for every 2–5 second chunk. To better evaluate long video
generation quality, we further introduce Video Drift Error (VDE) metrics based on Weighted Mean Absolute
Percentage Error (WMAPE) [23, 10], integrated with original VBench metrics, providing a more comprehensive
reflection of temporal consistency and long-range visual fidelity.

Comprehensive experiments are conducted on both LV-Bench and the traditional VBench to demonstrate
the superiority of our method. BlockVid achieves a 22.2% improvement on VDE Subject and a 19.4%
improvement on VDE Clarity in LV-Bench compared to the current state-of-the-art method.

2 RelatedWork

Long video generation. Minute-long video generation can be grouped into three settings: single-shot video
generation, multi-shot video generation, and movie-style video composition.

(1) Single-shot generation aims to produce a minute-long chunk within a consistent scene and semantic context,
emphasizing long-range temporal coherence and visual stability. Approaches fall into autoregressive (AR)
and semi-autoregressive (semi-AR, i.e., block diffusion) families. AR methods, such as FAR [12] and Loong
[34], formulate long video generation as next-frame (or next segment) prediction. Semi-AR methods generate
videos chunk by chunk, while performing iterative diffusion-based [27] denoising within each chunk. Their key
design choice lies in the chunk-level causal conditioning: MAGI-1 [31], Skyreel-V2 [5], and Self Forcing [19]
proceed strictly sequentially across chunks, whereas FramePack [43] adopts a symmetric schedule that treats
both ends as guidance and fills the middle autoregressively. In practice, semi-AR methods typically rely on
careful KV cache usage for efficiency and stability over long horizons.

(2) Multi-shot generation typically focuses on handling camera motions and transitions across scenes or
semantics. Recent systems, such as LCT [13], RIFLEx [45], and MoC [3], often organize text–video units with
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Prompt summary: A graceful white swan glides across a misty lake, dipping, splashing, and turning with serene elegance, its reflection mirroring 
every movement in the calm water. 

Figure 2 Comparison of visualization results between our method and different baselines in terms of accumulation
error. Details can be found in Appendix A.7.

interleaved layouts and positional extrapolation to accommodate multiple shots.

(3) Movie-style generation aims to create cinematic content by stitching together multiple chunks, often with
different scenes and styles, while maintaining a coherent global narrative or theme. Methods such as VideoTTT
[9], MovieDreamer [44], MovieBench [36], and Captain Cinema [37] resemble film editing, combining diverse
shots into a single coherent video guided by chunk-level text descriptions.

Block diffusion (also called semi-autoregressive or chunk-by-chunk diffusion) decodes long sequences in blocks:
within each block the model performs iterative diffusion denoising, while across blocks it conditions causally
on previously generated content via KV caches. This paradigm has been explored in both text and video.
In language modeling, BD3-LM [2] and SSD-LM [15] demonstrate that blockwise diffusion can combine
bidirectional refinement within a block with efficient, variable-length decoding through cached context
across blocks. In video generation, related formulations adopt chunk-wise diffusion with causal conditioning
to interpolate between pure diffusion (e.g., DiT-style bidirectional attention without KV caching) and
autoregression (variable-length decoding with KV caching but weaker visual fidelity and limited parallelism).
Representative systems include MAGI-1 [31], Self Forcing [19], CausVid [42], ViD-GPT [11], and SkyReels-V2
[5], which condition each new chunk on past chunks to extend temporal horizons while retaining diffusion’s
denoising quality within a chunk. Despite progress, block diffusion methods remain constrained by KV
cache–induced errors, limited scalability, and the lack of long video datasets and coherence-aware metrics.
We address these gaps with (1) BlockVid, a framework featuring semantic sparse KV cache, Block Forcing,
and tailored noise scheduling to enhance long-range coherence, and (2) LV-Bench, a benchmark of 1,000
minute-long videos with metrics for evaluating temporal consistency.

3 Method
3.1 Overview: Block Diffusion Architecture

BlockVid introduces a semi-AR block diffusion architecture. During training, we are given a single-shot
long video V = {V1, V2, V3, . . . , Vn}, where each video chunk Vi ∈ R(1+T )×H×W×3, with T frames, height H,
width W , and 3 RGB channels. We also have the corresponding chunk level prompts Y = {yi}ni=1, with yi
conditioning Vi. Specifically, the first frame serves as the image guidance. The 3D causal VAE compresses its
spatio-temporal dimensions to [(1 + T/4), H/8, W/8] while expanding the number of channels to 16, resulting
in the latent representation Z ∈ R(1+T/4)×H/8×W/8×16. The first frame is compressed only spatially to better
handle the image guidance.

During post-training, we introduce Block Forcing, a training strategy that stabilizes long video generation by
jointly integrating Velocity Forcing and Self Forcing objectives. Velocity Forcing aligns predicted dynamics
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Figure 3 Overview of the BlockVid semi-AR framework. The generation of chunk c+ 1 is conditioned on both a local KV
cache and a globally retrieved context. The global context is dynamically assembled by retrieving top-l semantically
similar KV chunks via prompt embedding similarity. Upon generation, the bank is updated with the new chunk’s most
salient KV tokens.

with semantic history to prevent drift, while Self Forcing closes the training–inference gap by exposing the
model to its own roll-outs and enforcing sequence-level realism.

As shown in Figure 3, in the latent space, the representation Z is first processed by the block diffusion denoiser
to produce the denoised latent Z̃. During this procedure, the semantic sparse KV cache is dynamically
constructed and preserved as a compact memory of salient keys and values, serving as semantic guidance for
subsequent chunk generation. Subsequently, the denoised latent Z̃ is projected back into the video space X̃.

Besides, we design a noise scheduling strategy that operates both during training and inference to stabilize
long video generation. During training, progressive noise scheduling gradually increases noise levels across
chunks. While during inference, noise shuffling introduces local randomness at chunk boundaries to smooth
transitions and maintain coherence.

3.2 Block Forcing

Self Forcing. A major challenge in long video generation is the training-inference gap: during training the
model is conditioned on ground-truth frames (teacher forcing), but at inference it must rely on its own
imperfect outputs, leading to exposure bias and error accumulation. To address this, we adopt the Self Forcing
loss [19], where the model generates a full video sequence x̃1:T semi-autoregressively and is then penalized at
the video level by matching its distribution pθ to the real data distribution pdata. Concretely, a discriminator
D evaluates entire videos, and the generator G is trained to minimize

LSF = min
G

max
D

Ex∼pdata[logD(x)] + Ex̃∼pθ
[log(1−D(x̃))], (1)

where x̃ ∼ pθ is obtained by the predictions of G. This formulation exposes the model to its own errors
during training and enforces sequence-level realism, thereby reducing exposure bias and improving temporal
consistency in long videos.
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Velocity Forcing. When generating very long videos, the model trained with Self Forcing alone can lose track of
the subject or scene, leading to drift (e.g., the character slowly changing identity or the background gradually
melting). To address this problem, we introduce a Velocity Forcing loss, decomposes the learning objective into
two complementary parts. From a fidelity perspective, Velocity Forcing ensures the reconstruction accuracy
of the current video chunk. This is determined by the ground-truth starting frame xstart of the current chunk
and the corresponding Gaussian noise ϵ, which together define the standard diffusion training signal. From
a semantic perspective, Velocity Forcing enforces semantic alignment between the current video chunk and
its most relevant historical context. Specifically, the top-l past chunks are resampled to match the temporal
length of the current chunk and averaged into a semantic reference xcond, which serves as high-level guidance
to maintain long-term coherence.

In the stochastic interpolant formulation of flow matching [1], the model predicts a velocity field vpred that
represents the temporal derivative of the interpolated state xt between noise and data.

vpred = vt(xt) =
d

dt
xt = fθ(xt, t). (2)

Formally, the Velocity Forcing loss penalizes the deviation of the predicted velocity vpred from both the noise
term ϵ and the semantic reference xcond, weighted by a coefficient γ ∈ [0, 1]:

LVF = E
[
∥vpred − (ϵ− γ · xcond)∥2

]
. (3)

This formulation ensures that the model learns not only to denoise the current chunk correctly but also to
remain semantically anchored to the relevant history, thereby reducing temporal drift and improving the
stability of long video generation. The final training loss is L = LSF + LVF.

3.3 Semantic Sparse KV Cache

To efficiently preserve long-range temporal dependencies, we introduce a Semantic Sparse KV Cache that
stores and reuses key-value pairs across video chunks. Inspired by ZipVL [16], we first dynamically identify
salient tokens with a probing mechanism and store the most informative KV tokens as the KV cache.

Formally, given the current chunk c and its queries Q, keys K, and values V , we compute the attention score
matrix

A = Softmax
(

QK⊤
√
d

+ Mask
)
, (4)

where the Mask denotes a chunk-level causal attention mask.

Then aggregate scores across heads and probe queries to form an importance vector m. Then the important
tokens are selected using the top-k indexing method, with M be the minimal number of tokens that cover a
fraction τ of the total importance score:

Ikeep = topk_index(m,M). (5)

This produces a sparse cache (Ksparse, Vsparse) containing only the most relevant context tokens.

During long video generation, the sparse KV caches from past chunks are stored in a global KV bank and
retrieved based on the semantic similarity of prompt embeddings:

simi = cos
(
Ec, Ei

)
, i ∈ {1, . . . , c−1}, (6)

where Ec is the embedding of the current prompt and Ei are embeddings of past prompts. The top-l most
similar entries are then selected. Finally, we concatenate the top-l semantic KV caches with the two most
recent caches to form the final KV cache:

(K∗, V ∗) = ConcatKV
(
{(Kj , Vj)}j∈seq_ctx, {(Ki, Vi)}i∈top-l

)
, (7)

where seq_ctx = {c−3, c−2} (if available). The detailed algorithm is provided in Appendix A.2.

Finally, the aggregated KV cache (K∗, V ∗) serves as conditional context, combined with the current prompt
yt to guide the generation of the target chunk:

Vt ∼ pθ( · | K∗, V ∗, yt) .
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Table 1 Overview of the datasets used for constructing LV-Bench.

Dataset Video Number Object Classes

DanceTrack 66 Humans (66, 100%)
GOT-10k 272 Humans (177, 65%) Animals (54, 20%) Environment (41, 15%)
HD-VILA-100M 117 Humans (47, 40%) Animals (35, 30%) Environment (35, 30%)
ShareGPT4V 545 Humans (381, 70%) Animals (82, 15%) Environment (82, 15%)

LV-Bench 1000 Humans (671, 67%) Animals (171, 17%) Environment (158, 16%)

3.4 Noise Scheduling

Progressive noise scheduling. The core idea here is to assign each chunk a different noise level, progressively
increasing noise levels rather than using a fix one. Specifically, if we split a video V into n chunks, each chunk
is assigned a noise level ϵc increasing with c, where c = 1, . . . , n.

We adopt a cosine schedule, which provides smooth acceleration and deceleration:

ϵc = ϵmin + 1
2

(
ϵmax − ϵmin

) (
1− cos

(
π c

n−1

))
, c = 1, 2, . . . , n. (8)

In this setting, the first chunk has ϵ0 = ϵmin (nonzero initial noise), and the last chunk has ϵn−1 = ϵmax

(maximal noise). For more noise schedules, please refer to Appendix A.5.

This progressive schedule helps mitigate error accumulation: the clean early chunks establish the scene, and
noisier later chunks are guided by them. In fact, progressively increasing noise encourages later chunks to
follow the patterns of the earlier and more certain frames, facilitating smoother temporal transition [38]. In
other words, earlier chunks act as anchors, and the rising noise in later chunks ensures new frames remain
consistent with the established content.

Noiseshuffling. Inspired by FreeNoise [28], we adapt local noise shuffling to the chunk-by-chunk setting. During
inference, each chunk c inherits per-frame base noises {ϵ(c)t }Tt=1 from a fixed random seed, where t ∈ {1, . . . , T}
indexes frames within a chunk and T is the number of frames per chunk. To smooth the transition across
chunk boundaries, we apply a shuffle unit of size s to the prefix and suffix regions. Specifically, the last s
frames of chunk c and the first s frames of chunk c+1 are shuffled independently within their local window:

ϵ̃
(c)
T−s+1:T = Shuffle

(
ϵ
(c)
T−s+1:T

)
, ϵ̃

(c+1)
1:s = Shuffle

(
ϵ
(c+1)
1:s

)
. (9)

This local permutation preserves the global order of chunks while introducing shared stochasticity at the
boundaries, which encourages the model to fuse adjacent chunks more smoothly. In contrast to re-sampling
entirely new noise for each chunk, this strategy maintains long-range coherence while mitigating abrupt
transitions at chunk boundaries.

4 LV-Bench

Dataset. To tackle the challenge of minute-long video generation, we curate a dataset of 1000 videos from
diverse open-source sources and annotate them in detail. As shown in Table 1, we collect high-quality video
chunks with lengths of at least 50 seconds from DanceTrack [30], GOT-10k [17], HD-VILA-100M [40], and
ShareGPT4V [6]. To obtain high-quality annotations, we employ GPT-4o as a data engine to generate
fine-grained captions for every 2–3 seconds in each video. The detailed prompt can be found in Appendix A.3.
Human-in-the-loop validation consists of manual visual checks at every stage of data production, including
data sourcing, chunk splitting, and captioning, to ensure high-quality annotations. In the data sourcing stage,
human annotators select high-quality videos and determine whether each raw video is suitable for inclusion.
In the chunk splitting stage, human annotators examine samples to verify that each chunk is free from errors
such as incorrect transitions. In the captioning stage, human annotators review the generated descriptions to
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Table 2 Comparison of different methods on LV-Bench. We report LV-Bench results on five VDE metrics and five
complementary metrics from VBench [21]. Our method achieves superior performance on the majority of these metrics.

Method VDE
Subject ↓ VDE

Background ↓
VDE

Motion ↓ VDE
Aesthetic ↓

VDE
Clarity ↓

MAGI-1 0.3090 0.5000 0.0243 3.8286 2.7225
Self Forcing 0.3716 1.6108 0.1549 3.4683 3.0798
PAVDM 1.8292 0.9323 0.0461 2.8957 1.9503
FramePack 4.3984 5.9421 0.0387 1.4751 4.2513
SkyReels-V2-DF-1.3B 0.1085 0.3179 0.0195 1.2083 0.9365

BlockVid-1.3B (Ours) 0.0844 0.2945 0.0119 0.9618 0.7551

Method Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Aesthetic
Quality ↑

Image
Quality ↑

MAGI-1 0.8992 0.9078 0.9947 0.6508 0.6662
Self Forcing 0.8481 0.8203 0.9947 0.6283 0.6805
PAVDM 0.8640 0.8924 0.9926 0.5267 0.6567
FramePack 0.9001 0.8791 0.9949 0.6043 0.6972
SkyReels-V2-DF-1.3B 0.9418 0.9579 0.9931 0.6035 0.6835

BlockVid-1.3B (Ours) 0.9597 0.9588 0.9956 0.6047 0.6852

ensure semantic accuracy and coherence. At each stage, at least two human annotators participate to provide
inter-rater reliability. We then randomly divided LV-Bench into an 8:2 split for training and evaluation.

Metrics. Drift penalties have been widely adopted to address information dilution [24] and degradation [26] in
long video generation. For example, IP-FVR [14] focuses on preserving identity consistency, while MoCA
[39] employs an identity perceptual loss to penalize frame-to-frame identity drift. Inspired by the Mean
Absolute Percentage Error (MAPE) and Weighted Mean Absolute Percentage Error (WMAPE) [23, 10], we
propose a new metric called Video Drift Error (VDE) to measure changes in video quality. We further design
5 long video generation metrics based on VDE. The core idea involves dividing a long video into multiple
smaller segments, each evaluated according to specific quality metrics (such as clarity, motion smoothness,
etc). Specifically, (1) VDE Clarity measures temporal drift in image sharpness, where creeping blur increases
the score, while a low value indicates stable clarity over time. (2) VDE Motion measures drift in motion
smoothness, where a low score indicates consistent dynamics without jitter or freezing. (3) VDE Aesthetic
measures drift in visual appeal, where a low score indicates sustained and coherent aesthetics over time. (4)
VDE Background measures background stability, where a low score indicates a consistent setting without drift
or flicker over time. (5) VDE Subject tracks identity drift, where a low score indicates the subject remains
consistently recognizable over time. Following previous works [13, 3], we also include five complementary
metrics from VBench [21]. The details are included in Appendix A.4.

5 Experiment

5.1 Implementation Details

LV-1.1M dataset. To improve post-training data for semi-AR models, we introduce LV-1.1M, a private curated
dataset of 1.1M long-take videos with fine-grained annotations. Each video is segmented into chunks, captioned
with GPT-4o, and aligned into coherent storylines, providing reliable supervision for long video generation.
For more details see Appendix A.6.

Multi-stage post-training. We adopt a two-stage post-training strategy. In Stage 1, we post-train BlockVid
on LV-1.1M to enhance its ability to handle long-take videos with coherent semantics, large-scale motions,
and diverse content. This stage focuses on improving temporal reasoning and narrative consistency under
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Table 3 Comparison of differentmethods on VBench [21]. We report VBench metrics of different methods following the
single-shot long video generation setting [13, 3]. Our method achieves superior performance in the majority of these
metrics.

Method Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Dynamic
Degree ↑

Aesthetic
Quality ↑

Image
Quality ↑

MAGI-1 0.8320 0.8931 0.9740 0.5537 0.5010 0.6120
Self Forcing 0.8211 0.9050 0.9799 0.6015 0.5130 0.6218
PAVDM 0.8415 0.9273 0.9769 0.6537 0.4970 0.6280
FramePack 0.9019 0.9450 0.9805 0.5715 0.5044 0.6381
SkyReels-V2-DF-1.3B 0.9391 0.9580 0.9838 0.6529 0.5320 0.6315
LCT (MMDiT-3B) 0.9380 0.9623 0.9816 0.6875 0.5200 0.6345
MoC 0.9398 0.9670 0.9851 0.7500 0.5547 0.6396

BlockVid-1.3B (Ours) 0.9410 0.9650 0.9870 0.7720 0.5839 0.6527

high-quality but heterogeneous video data. In Stage 2, we further post-train the model on the training split of
LV-Bench, a dataset containing longer videos (≥50s) compared to Stage 1, in order to enhance the model’s
extrapolation capability and align with the evaluation protocols. The detailed training setup can be found in
Appendix A.9.

5.2 Main Results

Results on LV-Bench. We first compare our method with several open-source long video generation baselines on
LV-Bench, including MAGI-1 [31], Self Forcing [19], PAVDM [38], FramePack [43], and SkyReels-V2-DF-1.3B
[5]. As shown in Table 2, our BlockVid-1.3B consistently outperforms these methods across most VDE metrics
and complementary metrics from VBench. In particular, BlockVid achieves the lowest error scores on all five
VDE metrics, reducing subject drift, background inconsistency, motion degradation, and perceptual losses
compared to strong baselines such as SkyReels-V2-DF-1.3B. On complementary VBench metrics, BlockVid
also delivers the highest subject consistency (0.9597) and background consistency (0.9588), as well as superior
motion smoothness (0.9956). Although SkyReels-V2-DF-1.3B attains slightly better aesthetic quality (0.6035
vs. 0.6047, lower is better) and FramePack yields marginally higher image quality (0.6972), BlockVid maintains
competitive performance on these aspects while achieving state-of-the-art results overall. These results
demonstrate that our method not only improves long-term coherence but also balances fidelity and aesthetics
in long video generation.

Results on VBench. We further compare our method with state-of-the-art baselines on VBench [21] under
the single-shot long video generation setting [13, 3]. As shown in Table 3, BlockVid-1.3B achieves superior
performance across the majority of metrics, surpassing both open-source and large-scale proprietary baselines.
Specifically, BlockVid obtains the highest scores in subject consistency (0.9410), motion smoothness (0.9870),
dynamic degree (0.7720), aesthetic quality (0.5839), and image quality (0.6527), demonstrating its ability to
generate temporally coherent, visually appealing, and semantically dynamic long videos. While MoC slightly
outperforms BlockVid in background consistency (0.9670 vs. 0.9650), our model delivers the most balanced
overall performance across all six dimensions. These results highlight the effectiveness of BlockVid in achieving
both temporal stability and perceptual quality in long video generation.

5.3 Ablation Study

We further conduct ablation studies from four perspectives: noise scheduling, KV cache settings, Block Forcing,
and post-training datasets, as detailed below.

Noise scheduling. As shown in Table 4, during post-training, the cosine noise schedule achieves the best overall
performance compared to naive or alternative scheduling strategies. During inference, noise shuffle with a
window size of s = 4 further enhances temporal smoothness across chunk boundaries, leading to the most
stable and coherent long video generation.
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Table 4 Ablation on noise schedule.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓

VDE
Aesthetic ↓

VDE
Clarity ↓

Naive 0.0936 0.2894 0.2311 0.9643 0.7791
Linear 0.0935 0.3015 0.0167 0.8910 0.7610
Cosine 0.0844 0.2945 0.0119 0.9618 0.7551
Sigmoid 0.0961 0.4027 0.0276 0.9723 0.8247

No Shuffle 0.0902 0.3007 0.0281 0.9635 0.7580
s=2 0.0853 0.2995 0.0138 0.9730 0.7492
s=4 0.0844 0.2945 0.0119 0.9618 0.7551

KV cache. We further explore rolling KV [19], dynamic sparse KV [16], and our semantic sparse KV under
different attention thresholds τ . As shown in Table 5, our semantic sparse KV cache with τ = 0.98 achieves
the best overall performance, consistently reducing subject, background, motion, aesthetic, and clarity errors
compared to other baselines.

Table 5 Ablation on KV cache settings.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓

VDE
Aesthetic ↓

VDE
Clarity ↓

Rolling KV 0.0961 0.3519 0.0547 0.9815 0.7913
Dynamic Sparse KV (τ = 0.97) 0.0927 0.3074 0.0253 0.9781 0.7730
Dynamic Sparse KV (τ = 0.98) 0.0910 0.3040 0.0239 0.9716 0.7652
Semantic Sparse KV (τ = 0.97) 0.0869 0.2988 0.0153 0.9684 0.7570
Semantic Sparse KV (τ = 0.98) 0.0844 0.2945 0.0119 0.9618 0.7551

Block Forcing. Table 6 shows that combining Self Forcing [19] and Velocity Forcing yields the best results,
with our full Block Forcing achieving the lowest errors across all VDE metrics.

Table 6 Ablation on Block Forcing.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓

VDE
Aesthetic ↓

VDE
Clarity ↓

Naive 0.0910 0.3317 0.0259 0.9810 0.7835
Self Forcing 0.0885 0.3155 0.0169 0.9658 0.7630
Velocity Forcing 0.0861 0.3015 0.0137 0.9673 0.7618
Ours 0.0844 0.2945 0.0119 0.9618 0.7551

Post-training datasets. As shown in Table 7, Stage 2 training on LV-Bench provides significantly greater
improvements than Stage 1 training on LV-1.1M, as long videos (≥50s) offer crucial extrapolation benefits for
minute-long generation. Furthermore, our multi-stage post-training proves essential for achieving the best
overall performance.

6 Conclusion

In this work, we have introduced BlockVid, an effective block diffusion framework for minute-long video
generation. Our design integrates three key innovations: a semantic sparse KV cache that selectively retrieves

9



Table 7 Ablation on post-training datasets.

Method VDE
Subject ↓

VDE
Background ↓

VDE
Motion ↓

VDE
Aesthetic ↓

VDE
Clarity ↓

Stage 1 only 0.8891 1.1573 0.0491 1.3742 1.2463
Stage 2 only 0.1752 0.4722 0.0153 0.9946 0.8452
Stage 1 + 2 0.0844 0.2945 0.0119 0.9618 0.7551

salient context to mitigate error accumulation, a Block Forcing strategy that combines Velocity Forcing and
Self Forcing to reduce temporal drift and close the training–inference gap, and a noise scheduling scheme
that stabilizes long-horizon generation. Together, these components enable BlockVid to significantly improve
long-range temporal coherence while maintaining high visual fidelity. To address the absence of suitable
evaluation resources, we have further proposed LV-Bench, a fine-grained benchmark of 1,000 minute-long
videos with detailed chunk-level annotations. Alongside, we have introduced Video Drift Error (VDE) metrics,
which directly quantify coherence degradation over time. Our extensive experiments on LV-Bench and VBench
have demonstrated that BlockVid achieves state-of-the-art performance, outperforming prior open-source and
proprietary baselines across both coherence-aware and perceptual quality metrics.
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A Appendix

A.1 LLMUse Declaration

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of English
writing. They were not involved in research ideation, experimental design, data analysis, or interpretation.
The authors take full responsibility for all content.

A.2 Algorithm: Semantic Sparse KV Cache

Algorithm 1 Semantic Sparse KV Cache

1: Input: chunks {Xi}Ni=1, prompts {Yi}Ni=1, target t=N , threshold τ , top-K, drop pdrop
2: Output: final KV cache (K∗,V∗) for Xt

3: KV_BANK← ∅ // dict: i 7→ (K
(i)
sparse,V

(i)
sparse)

// Stage A: Build and store sparse KV for all prior chunks
4: for c ∈ {1, . . . , N−1} do
5: if c /∈ KV_BANK then
6: (K

(c)
sparse,V

(c)
sparse)← BuildSparseKV(Xc,Yc, τ)

7: KV_BANK[c]← (K
(c)
sparse,V

(c)
sparse)

8: end if
9: end for

// Stage B: Retrieve Top-K semantic from bank (no recompute)
10: seq_ctx← {N−3, N−2} (if available)
11: Et ←MeanEmbed(Yt)
12: S ← {1, . . . , N−1} \ seq_ctx
13: for i ∈ S do
14: Ei ← T5-Embed(Yi); simi ← cos(Et, Ei)
15: end for
16: Top-l-Idx← argsort({simi}i∈S)[−l :]
17: (Kseq,Vseq)← ConcatKV

(
{KV_BANK[j] : j ∈ seq_ctx}

)
18: (Ksem,Vsem)← ConcatKV

(
{KV_BANK[i] : i ∈ TopKIdx}

)
// Stage C: Final merge (seq_ctx + Top-l semantic) & token drop

19: (K∗,V∗)← ConcatKV
(
(Kseq,Vseq), (Ksem,Vsem)

)
20: return (K∗,V∗)

A.3 Prompts for LV-Bench’s Data Engine

Role. Act as a professional video content analyst. Describe a given video frame in English.
Context. The previous frame was described as: "{previous_description}". Use this as context to ensure
temporal coherence.
Instruction. Write a single, descriptive paragraph that:
• Identifies the main subject, their specific actions, and expressions.
• Describes the environment and background, including setting and lighting.
• Highlights the cinematic quality, such as composition, color palette, and atmosphere (e.g., tense, serene,

spectacular).
Constraints. Output must be one coherent paragraph, written in natural language prose, without bullet
points or numbered lists.
Return. The paragraph description of the current frame.
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Algorithm 2 BuildSparseKV: Dynamic Sparse KV Cache

1: function BuildSparseKV(X,Y, τ)
2: H ← Encode(X,Y) // model input states
3: Q,K, V ← Project(H); (Q,K)← RoPE(Q,K)
4: q_len← length(Q)
5: if q_len > 1 then // prefill stage (identify salient keys)
6: Iprobe ← Concat(Recent(64), Random(64, range=[0, q_len−64)))
7: Qprobe ← Q[:, Iprobe, :]

8: A← Softmax
(

QprobeK
⊤

√
d

+ CausalMask(Iprobe, q_len)
)

9: s←
∑

heads,probe A // aggregate over heads and probe queries
10: m← CumMean(s) // cumulative mean (older tokens discounted)
11: M ← CoverCount(m, τ) // smallest M covering τ ·

∑
m

12: Ikeep ← Top-K(m,M)
13: return

(
K[:, Ikeep, :], V [:, Ikeep, :]

)
14: else
15: return (K,V ) // decode stage: keep all
16: end if
17: end function

A.4 LV-BenchMetrics

A.4.1 Preliminaries: Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE) and Weighted Mean Absolute Percentage Error (WMAPE) are
widely adopted evaluation metrics in forecasting [23], time series analysis [10], and increasingly in video
quality assessment tasks [18]. MAPE measures the average relative deviation between predicted values ŷi and
ground-truth values yi, expressed as a percentage:

MAPE =
100

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (10)

Although simple and interpretable, MAPE can be biased when actual values yi are close to zero. To address
this issue, WMAPE normalizes the absolute error by the sum of actual values, making the metric scale-invariant
and more robust in practice:

WMAPE =

∑N
i=1 |yi − ŷi|∑N

i=1 |yi|
. (11)

These metrics provide interpretable percentage-based measures of consistency and prediction accuracy, and
can be directly applied to quantify deviations across frames or segments in video tasks [18].

A.4.2 Video Drift Error (VDE)

Inspired by the WMAPE [23, 10], we propose a new metric called Video Drift Error (VDE) to measure
changes in video quality. The core idea involves dividing a long video into multiple smaller segments, each
evaluated according to specific quality metrics (such as clarity, motion smoothness, etc). These scores are then
used to calculate the relative change compared to the first segment. For long video generation, small quality
deviations may accumulate within each short time segment. Over time, these deviations gradually build up
[24, 26]. This accumulation error can be quantified and detected through VDE. Specifically, a high VDE value
indicates significant fluctuations or degradation in video quality as playback progresses, while a low VDE
value suggests consistent quality levels throughout. Similar drift penalties have been introduced in works such
as IP-FVR [14], which focuses on preserving identity consistency, and MoCA [39], which employs an identity
perceptual loss to penalize frame-to-frame identity drift. Therefore, monitoring VDE during long-term video
generation helps identify potential quality degradation trends and allows timely corrective actions to be taken.

15



Specifically, the method first divides the video into N smaller segments of equal duration: V = {S1, S2, . . . , SN},
where V is the full video, and Si represents the i-th segment.

Then the method evaluate each segment by applying a quality evaluation function (e.g., metric_function) to
compute a score Qi for each segment Si:

Qi = metric_function(Si), ∀i ∈ {1, 2, . . . , N}. (12)

Furthermore, the method compute rate of change which calculates the relative change ∆i in quality scores
from the first segment (Q1) for all subsequent segments (i ≥ 2):

∆i =
Qi −Q1

Q1
. (13)

The final VDE value is derived as a weighted sum of absolute rate changes, using linear or logarithmic weights
wi:

VDE =

N∑
i=2

wi · |∆i|. (14)

A.4.3 VDEMetrics

Metric-specific VDEs. Given the VDE shell defined in the preliminaries (reference chunk S1, per-chunk
scores mi, and weights wi), each metric instantiates mi as follows; the VDE value is then

VDE(·) =

N∑
i=2

wi
|mi −m1|

m1
, wi ∈

{
N − i+ 1, log(N − i+ 1)

}
. (15)

VDE Clarity (↓). It evaluates temporal drift in image sharpness (defocus/blur). For long videos, creeping
blur or inconsistent deblurring raises VDEclar, while a low value indicates stable perceived clarity over time.

Let ft ∈ Si be frames and Yt their luminance. Define per-frame sharpness by Laplacian variance and average
within the chunk:

mclar
i =

1

|Si|
∑
t∈Si

Var
(
∇2Yt

)
, VDEclar =

N∑
i=2

wi
|mclar

i −mclar
1 |

mclar
1

. (16)

VDE Motion (↓). It tracks drift in motion magnitude/smoothness (pace and jitter). Long-sequence generators
often change kinetic behavior over time; a low VDEmot signals consistent dynamics without late-stage jitter
or freezing.

Let ut denote the optical flow between consecutive frames, and define the per-frame motion energy as
E(ut) = ∥ut∥2. Alternatively, one may compute a motion-smoothness score st based on inter-frame differences.
The chunk-level score is then

mmot
i =

1

|Si| − 1

∑
t∈Si

E(ut) or mmot
i =

1

|Si|
∑
t∈Si

st, (17)

and the final penalty is

VDEmot =

N∑
i=2

wi
|mmot

i −mmot
1 |

mmot
1

. (18)

VDE Aesthetic (↓). It measures drift in global visual appeal (composition, color harmony, lighting). In long
videos, style can drift or collapse; low VDEaes indicates sustained, coherent aesthetics along the timeline.

Let A(ft) be a learned aesthetic predictor applied per frame; average within each chunk:

maes
i =

1

|Si|
∑
t∈Si

A(ft), VDEaes =

N∑
i=2

wi
|maes

i −maes
1 |

maes
1

. (19)
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VDE Background (↓). It evaluates stability/consistency of the background (camera drift, flicker, texture
boil). Long videos often accumulate spurious background motion; low VDEbg reflects a stable setting that
does not “melt” over time.

Let Bt be a background mask and ut(x) the flow at pixel x. Define per-frame background staticness
ϕt =

1
|Bt|

∑
x∈Bt

1
(
∥ut(x)∥ ≤ τ

)
and average per chunk:

mbg
i =

1

|Si|
∑
t∈Si

ϕt, VDEbg =

N∑
i=2

wi
|mbg

i −mbg
1 |

mbg
1

. (20)

VDE Subject (↓). It captures drift in subject identity/attributes (face morphing, color/outfit changes).
For long generations, identity can subtly shift; low VDEsubj indicates the protagonist remains recognizably
consistent throughout.

Let E(·) be a subject-identity encoder and ē1 the mean embedding over subject crops in S1. Define per-frame
identity similarity st = cos

(
E(cropt), ē1

)
and average within the chunk:

msubj
i =

1

|Si|
∑
t∈Si

st, VDEsubj =

N∑
i=2

wi
|msubj

i −msubj
1 |

msubj
1

. (21)

A.4.4 ComplementaryMetrics

Following previous minute-long generation works [13, 3], we additionally include five complementary metrics
from VBench [21] that are essential for evaluating long video generation, including: (1) Imaging Quality, which
measures the technical fidelity of each video frame by quantifying distortions (e.g., over-exposure, noise, blur),
thus reflecting the clarity and integrity of the generated imagery. (2) Motion Smoothness, which assesses the
fluidity and realism of movements in the video, ensuring that frame-to-frame transitions are continuous and
physically plausible to achieve natural motion. (3) Aesthetic Quality, which evaluates the visual appeal of the
video frames, capturing artistic factors like composition, color harmony, photorealism, and overall beauty as
perceived in each frame. (4) Background Consistency, which measures the stability of the scene’s background
across the video, determining whether the backdrop remains visually consistent throughout all frames. (5)
Subject Consistency, which evaluates whether a subject’s appearance remains consistent across every frame of
the video, capturing the temporal coherence of that subject’s visual identity over the entire sequence.

A.5 Other Noise Schedules

For example, a simple linear schedule with a nonzero initial noise level is

ϵc = ϵmin +
c

n− 1

(
ϵmax − ϵmin

)
, c = 1, 2, . . . , n, ϵmin > 0, (22)

so that the first chunk has ϵ0 = ϵmin (nonzero initial noise) and the last has ϵn−1 = ϵmax (maximal noise).

Similarly, a sigmoid (logistic) schedule grows slowly at the beginning and end, with faster change in the
middle:

ϵc = ϵmin +
(
ϵmax − ϵmin

) 1

1 + exp
(
− α

(
c

n−1 − 0.5
)) , c = 1, 2, . . . , n, (23)

where α > 0 controls the steepness of the curve transition (larger α → sharper transition).
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A.6 LV-1.1MDataset

To improve post-training data for semi-AR models, we introduce a private dataset named LV-1.1M, which
contains fine-grained annotations for each video. We first collect videos from publicly datasets: Panda 70M [7]
and HD-VILA-100M [40], and private data (about 1M). These raw data often contain substantial amounts of
noisy and low-quality material, lacking in careful curation for content quality and caption coherence. Thus,
we devise several filtering criteria to select high-quality, large-motion , and long-take videos. We leverage
PySceneDetect [8] to detect scene transitions and employ Q-Align [35] to remove videos with low aesthetics
scores. We also use optical flow as a clue to filter out static videos with little motion dynamics. The optical
flow is calculated between each pair of neighboring frames sampled at 2 fps and discard the videos with a low
average optical flow score. Finally, we collect 1.1M high-quality long-take videos.

To caption them, we segment each long-take video into multiple chunks. The number of frames in each
chunk is determined by the maximum input capacity of the corresponding foundational model (for example,
Wan2.1 [32] allows up to 81 frames). Keyframes are extracted from each chunk and processed through
GPT-4o, utilizing prompt engineering to generate captions for each individual chunk. Subsequently, GPT-4o
is employed again to align all chunk-level captions, ensuring a coherent storyline throughout the entire video.

A.7 Visualization Comparison

The full prompts of the Figure 2 are as follows:

"captions": [
"A serene white swan glides across a misty lake, its reflection shimmering in the calm water (00s - 03s).",
"The swan dips its head gracefully into the water,
creating gentle ripples around it (04s - 07s).",
"Lifting its head, the swan shakes off droplets, sending small splashes into the air (08s - 11s).",
"It spreads its wings slightly, flapping them to create a splash and adjust its position (12s - 15s).",
"The swan turns slightly, continuing to glide smoothly as mist hovers over the water (16s - 19s).",
"With elegant movements, the swan swims forward, its long neck curved gracefully (20s - 23s).",
"The swan pauses briefly, surveying its surroundings with a poised demeanor (24s - 27s).",
"It resumes swimming, its feathers catching the soft light filtering through the mist (28s - 31s).",
"Dipping its beak again, the swan appears to forage or drink from the tranquil waters (32s - 35s).",
"The swan lifts its head once more, shaking off water with a delicate motion (36s - 39s).",
"Turning its body, the swan reveals its full profile against the backdrop of foggy greenery (40s - 43s).",
"It continues its graceful journey, leaving a trail of ripples behind (44s - 47s).",
"The swan’s reflection mirrors its every move, enhancing the peaceful ambiance (48s - 51s).",
"As it drifts further away, the swan becomes part of the misty landscape (52s - 55s).",
"The swan slows down, almost still, embodying tranquility on the quiet lake (56s - 59s)."]

As shown in Figure 2, all five baselines exhibit varying degrees of severe accumulation errors when generating
minute-long videos. MAGI-I [31], Self-Forcing [19], and PAVDM [38] suffer from significant image quality
degradation and color distortion after around 12 seconds, with the video gradually deteriorating and eventually
collapsing. FramePack [43], on the other hand, avoids severe image distortion but produces poor dynamics
and limited content diversity due to its symmetric progression design. SkyReel-V2 [5] is the closest baseline
in comparison, yet it still experiences noticeable color drift after 12 seconds, which continues to accumulate
until the final chunk. In contrast, our method outperforms all of these approaches, maintaining subject and
background consistency, preserving image quality, and preventing color degradation.
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A.8 Visualization Results

Figure 4 More visualization results #1.

"captions": [
"A DJ in vibrant Nigerian attire stands behind a mixing console, adjusting knobs with focused precision (00s -
03s).",
"He glances at the audio waveforms on his monitor, syncing his movements to the rhythm of the track (04s - 07s).",
"With smooth hand gestures, he manipulates the turntables, blending beats seamlessly in the studio (08s - 11s).",
"The DJ nods along to the music, fully immersed as he fine-tunes levels and effects (12s - 15s).",
"His reflection is visible in the glass window as he dances subtly while mixing (16s - 19s).",
"He lifts one hand in the air, hyping the unseen audience as the bass drops (20s - 23s).",
"Smiling broadly, he spins the jog wheel with flair, showcasing his technical skill (24s - 27s).",
"He raises both arms triumphantly, feeding off the energy of the music he’s creating (28s - 31s).",
"Leaning into the mic, he speaks or chants rhythmically, engaging listeners through the airwaves (32s - 35s).",
"He throws his hands up again, eyes closed, lost in the groove he’s crafted (36s - 39s).",
"Adjusting headphones around his neck, he continues to tweak controls with rhythmic precision (40s - 43s).",
"He gestures toward the camera with a confident smile, radiating charisma and passion (44s - 47s).",
"Moving fluidly between decks, he layers sounds with expert timing and flair (48s - 51s).",
"He laughs joyfully, clearly enjoying every moment as he commands the radio station’s sound (52s - 55s).",
"Finishing his set with a final flourish, he waves to the crowd, leaving the studio buzzing with energy (56s - 59s)."]
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Figure 5 More visualization results #2.

"captions": [
"The camera glides through a dimly lit Victorian hallway, revealing wood paneling, arched ceilings, and warm
ambient lighting (00s - 03s).",
"Classical statues and sconces line the corridor as the view advances through carved archways (04s - 07s).",
"Past gilded wall art and columns, the camera approaches a grand entryway lit by a chandelier (08s - 11s).",
"Inside a lavish sitting room, antique furniture and portraits glow under lighting (12s - 15s).",
"The camera pans across dark paneled walls with vintage posters and sculptures, highlighting the curated elegance
(16s - 19s).",
"A solitary armchair beneath a chandelier, flanked by side tables and art pieces, evokes Victorian comfort (20s -
23s).",
"Rotating slowly, the camera reveals symmetrical decor — matching lamps, portraits, and ceiling beams (24s -
27s).",
"Pulling back, the view widens to a two-story foyer with a sweeping balcony and dramatic lighting (28s - 31s).",
"Double doors open to adjacent rooms, while rugs and polished floors reflect the glow (32s - 35s).",
"The camera ascends to capture the foyer’s verticality with balconies, lanterns, and sculptural accents (36s - 39s).",
"Blue accent lighting outlines pillars and doors, contrasting with the warm tones (40s - 43s).",
"Through the grand archway, the viewer is drawn toward a luminous sitting area framed by columns (44s - 47s).",
"From mid-hall, the layered depth and symmetry of the mansion interior are revealed (48s - 51s).",
"Pulling back further, soaring ceilings and ornate woodwork are shown in interplay of shadow and glow (52s -
55s).",
"The final shot retreats outdoors, framing the mansion’s facade at twilight, glowing windows welcoming the viewer
(56s - 59s)." ]
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Figure 6 More visualization results #3.

"captions": [
"Three friends sit around a makeshift table in a dimly lit auto shop, clinking beer bottles in a cheerful toast (00s -
03s).",
"They laugh as they settle back into their tire seats, enjoying the camaraderie and casual atmosphere (04s - 07s).",
"The man on the left raises his bottle in a playful gesture, sharing a joke that sends everyone into laughter (08s -
11s).",
"He animatedly tells a story, gesturing with his bottle while his friends react with amusement (12s - 15s).",
"Leaning forward with a grin, he holds up his bottle triumphantly as if making a point or celebrating (16s - 19s).",
"He lowers his bottle, chuckling, clearly enjoying the moment and the company of his friends (20s - 23s).",
"Still smiling, he glances at his buddies, who are equally entertained as the vibe fills the garage (24s - 27s).",
"One friend takes a sip while the other leans back, laughing at the ongoing banter (28s - 31s).",
"The group’s laughter grows louder as the man in the middle throws his head back in delight (32s - 35s).",
"The man on the left leans in again, speaking animatedly as his friends listen with attention (36s - 39s).",
"He gestures with his bottle, emphasizing his point, while the others nod and smile (40s - 43s).",
"He extends his arm to offer a bottle to his friend, sparking more laughter (44s - 47s).",
"The friends continue to enjoy each other’s company, carefree amid the cluttered garage (48s - 51s).",
"A fourth friend enters, joining the laughter as the camera pans to capture the group dynamic (52s - 55s).",
"All four men share in the joyous moment, seated among tools and car parts, embodying friendship (56s - 59s)."]
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Figure 7 More visualization results #4.

"captions": [
"A young woman with long hair sits at a glowing bar, bathed in neon light, holding a glass of beer thoughtfully
(00s - 03s).",
"She lifts her gaze, then brings the glass to her lips for a slow sip, the vibrant lighting highlighting her contemplative
mood (04s - 07s).",
"After sipping, she lowers the glass and glances around, her reflection visible in the mirror behind the bar (08s -
11s).",
"She takes another drink while watching her reflection, neon hues shifting across her face and surroundings (12s -
15s).",
"Lowering her glass again, she looks off to the side with a pensive expression as the glow ripples over the scene
(16s - 19s).",
"The camera pans slightly left, revealing glowing bottles, mirrored surfaces, and flickering colored lights (20s -
23s).",
"She takes one more sip as the background comes alive with movement — another woman dances subtly, silhouetted
against the bar (24s - 27s).",
"The camera sweeps further left, showing the bustling bar environment filled with patrons under dynamic neon
strips (28s - 31s).",
“A man leans in from the side, speaking as they exchange words under pulsating lights (32s–35s).”,
"He turns away, gesturing toward the bar as other guests laugh and chat nearby (36s - 39s).",
"The camera shifts to a bartender engaging with customers while visuals flash on a screen behind him (40s - 43s).",
"He gestures animatedly, his movements synced with the rhythm of the music and lights (44s - 47s).",
“Customers smile and clink glasses as the neon-lit bar pulses with energy (48s - 51s).”,
"The bartender continues his lively interaction, surrounded by the buzz of conversation and glowing lights (52s -
55s).",
"The scene ends with a wide view of the bar — people mingling, laughing, drinking — all in a neon-drenched
party atmosphere (56s - 59s)."] 22



Figure 8 More visualization results #5.

"captions": [
"A sleek black BMW M4 with ’SCHUBERT’ decals idles under streetlights on a wet European night, its headlights
piercing the darkness (00s - 03s).",
"The camera glides closer, revealing the car’s aggressive front grille and glowing LED headlights reflecting off the
rain-slicked cobblestones (04s - 07s).",
"The license plate ’EM EP99RT’ comes into focus as the car remains stationary, exuding power and elegance
against the backdrop of historic buildings (08s - 11s).",
"The camera pulls back slightly, capturing the full front view of the BMW as it sits poised in the center of the
glistening street (12s - 15s).",
"The scene widens to show the car framed by grand architecture, with ambient lighting enhancing its glossy finish
and sharp lines (16s - 19s).",
"A low-angle shot emphasizes the car’s stance, with reflections dancing across the wet pavement (20s - 23s).",
"The camera moves to the side, showcasing the BMW’s muscular profile and intricate alloy wheels (24s - 27s).",
"As the camera sweeps along the flank, the wet street mirrors the car’s silhouette and nearby street lamps (28s -
31s).",
"The shot lingers on the rear three-quarter view, capturing the interplay of light and reflection on its polished
surface (32s - 35s).",
"The camera drifts lower, focusing on a shimmering puddle that reflects the car and ornate building behind it (36s
- 39s).",
"The reflection becomes the focal point, blending the car’s image with the glowing façade of the architecture (40s -
43s).",
"The camera glides over the reflective surface, emphasizing the serene yet powerful atmosphere of the rainy night
(44s - 47s).",
"The final frames capture rippling reflections, evoking calm and sophistication as the BMW remains motionless in
its urban sanctuary (48s - 52s)."]
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Figure 9 More visualization results #6.

"captions": [
"A close-up shows a sleek white water bottle on a black stationary bike handlebar, with blurred gym equipment
behind (00s–03s).",
"The camera tilts down, framing the bottle and MagSafe tablet mount (04s–07s).",
"Pulling back, the shot reveals more of the bike’s white-and-black console and handlebars, with rows of bikes in
the backdrop (08s–11s).",
"The digital display flickers to life with workout metrics as the camera pans left, revealing more bikes in soft focus
(12s–15s).",
"Continuing the pan, the frame captures rhythmic rows of bikes and lit screens, emphasizing symmetry and tech
(16s–19s).",
"The shot shifts right to focus on ergonomic handlebars and seats, as natural light streams through large windows
(20s–23s).",
"Moving forward, the camera glides past multiple bikes, showing clean lines and minimalist design in a polished
wooden-floored gym (24s–27s).",
"Zooming out, the row of bikes extends into the distance, reinforcing the quiet, orderly, high-tech setting (28s–31s).",
"The sweep continues, capturing reflections on glossy floors and uniform digital displays (32s–35s).",
"A pan across the gym reveals more machines, including recumbent bikes, aligned under bright window-lit walls
(36s–39s).",
"Shifting focus, the camera moves to the rear, showing more black-and-white cardio equipment in natural light
(40s–43s).",
"The perspective shifts to highlight the depth of the space, with machines stretching toward windows, evoking
openness and calm (44s–47s).",
"Gliding along a recumbent bike, the camera emphasizes its sleek form and monitor, framed by sunlit glass panels
(48s–51s).",
"Continuing smoothly, the frame reveals the gym’s layout — neat rows, reflective floors, and daylight enhancing
serenity (52s–55s).",
"A final pan shows the full expanse of the modern studio, empty yet radiating tranquility and precision (56s–59s)."
]
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A.9 Training setup

We first initialized our model with SkyReels-V2-DF-1.3B [5], which is a customized version of Wan2.1-
T2V-1.3B [32]. The video resolution used for training and inference follows the standard 480p (854×480).
Experiments are conducted on a distributed computing cluster equipped with high-performance GPU nodes,
each containing 192 CPU cores, 960 GB of system memory, and 8 × NVIDIA H20 GPUs (96 GB each).
InfiniBand interconnects provide high-bandwidth communication across nodes for distributed training. In
Stage 1, we train the model on 32 GPUs, requiring approximately 7 days per configuration to complete
one epoch over the entire LV-1.1M dataset. In Stage 2, we further train the model on 32 GPUs, requiring
approximately 50 hours per configuration to complete two epochs over the entire LV-Bench training set.
We employ AdamW and stepwise decay schedule for all stages of post-training. The initial learning rate is
1× 10−4, then reduced to 5× 10−5, with the weight decay set to 1× 10−4. The noise level at the last time
step corresponds to ϵmax, where the SNR is 0.003, which is the default setting in Wan2.1. “In noise shuffling,
we set the window size to s = 4, meaning that shuffling occurs among 4 frames. For the semantic sparse KV
cache, due to the limitation of single-GPU memory, we use Top-l semantic retrieval with l = 2.

A.10 Limitation and FutureWork

Although our framework demonstrates strong performance in single-shot long video generation, it has not yet
been thoroughly evaluated under other settings. In particular, multi-shot long video generation, where the
model must handle complex transitions between multiple shots or scenes, remains unexplored. This setting
introduces new challenges such as maintaining cross-shot consistency, preserving global narrative flow, and
preventing semantic drift across diverse visual contexts. Addressing these challenges is critical to further
extend the applicability of our foundation model.

In future work, we plan to investigate multi-shot scenarios and develop mechanisms for coherent storytelling
across extended sequences. More importantly, we aim to expand LV-Bench to a larger scale and incorporate
3D-aware techniques into BlockVid to advance its capabilities as a world model. We believe expanding into
these directions will further showcase the generality of our approach and contribute to building a more versatile
long video foundation model.
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